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Abstract. We derive a formula using closed-orbit theory for the photodetachment cross-section of H− in
the presence of a static electric field when there is an arbitrary angle θL between the laser polarization
direction and the static electric field. This formula generalizes the previous result for laser polarization
parallel to the static electric field, the effect of laser polarization direction appears as a factor cos2(θL) in the
amplitude of the oscillation. A photodetachment cross-section formula valid above and below detachment
threshold is proposed.

PACS. 32.60.+i Zeeman and Stark effects – 32.80.Gc Photodetachment of atomic negative ions – 31.15.Gy
Semiclassical methods

Since Bryant et al. [1,2] observed the “ripple” structure in
the photodetachment cross-section of H− in the presence
of a static electric field, photo-detachment of negative ions
in a static electric field has attracted both theoretical and
experimental attentions over the years [3–8]. Fabrikant
studied the theories of photo-detachment of negative ions
in a static electric field many years ago [9,10], Rau and
Wong provided a first quantitative theory [11] for the ob-
served “ripple” structure based on “Frame-transformation
theory”. Their photodetachment cross-section in an elec-
tric field involves an integral over Airy functions. Du and
Delos [12] presented an alternative formula consisting of
a smooth field-free background term and an oscillating
term. Because this form is consistent with the more gen-
eral closed-orbit theory [13–15], the “ripple” structure was
interpreted as arising from the interference between the
detached electron wave going out from and returning to
the nucleus following a closed-orbit. A direct derivation of
the two-term formula using closed-orbit theory was pre-
sented only recently [16].

Most of the discussions have focused on the case when
the laser polarization direction is parallel to the static elec-
tric field direction, the “ripple” effect is the largest in this
case and it has been experimentally observed [1,2]. When
laser polarization direction is made perpendicular to the
static electric field, the “ripple” effect in the photodetach-
ment cross-section is very small [1,2], we have provided
an explanation for the disappearance of oscillations [17].
What happens to the intermediate situation when there is
an arbitrary angle θL between the laser polarization direc-
tion and the static electric field? In a study on photode-
tachment of negative ions in a static electric field with
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strong electromagnetic field, Ostrovsky and Telnov [18]
were able to derive some general formulas for multi-photon
detachment cross-sections. Their formula in their equa-
tion (7.5) does include a dependence on the angle between
the electric field and the laser polarization direction. How-
ever, we note Ostrovsky and Telnov used several functions
(such as A0

n and Γ0
n in their notations) in their formula,

these functions are defined via integrals, but because they
were concerned about general formulations, they did not
consider any specific model for H− in their paper, and
they did not give explicit expressions for these functions.
In contrast, we will consider a simple model for H− and
derive explicit expressions for the cross-section. Our ap-
proach is also very different from that of Ostrovsky and
Telnov. We apply the standard closed-orbit theory [13–15]
to this problem, closed-orbit theory has been very success-
ful in describing the interferences in the photoinization of
atoms in external fields in the last decade [15]. This ap-
proach allows us to follow the detached electron around
various closed-orbits until it comes back to interfere. This
approach enables us to clearly identify the physical origins
of the different terms and factors in the cross-section [16].
In addition, we discuss how to extend our photodetach-
ment formula below threshold, this problem was not con-
sidered by Ostrovsky and Telnov in their paper.

In this article we use a simple model for H− and pro-
vide an quantitative answer to the question above. We
follow the closed-orbit theory in reference [16] and de-
rive a more general two-term formula in equation (14)
for the photodetachment cross-section which is valid for
an arbitrary laser polarization angle θL. In our new for-
mula, the smooth background term is identical to the one
in the parallel case [12,16], but for the oscillation term,
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while the phase of the oscillation remains the same as in
the parallel case, the amplitude of the oscillation acquires
an additional angle dependent factor cos2(θL), which nor-
mally reduces the oscillation. Atomic units will be used
in the following. Because the present approach is similar
to that in reference [16], we will only give the major steps
and emphasize the differences in the derivations which are
necessary for understanding the new result.

Assuming the static electric field in the z-direction
and the laser polarization direction in (θL,φL). The
photo-detached electron wave function ψd satisfies the
schrödinger equation with a source term [16],

(E −H)ψd(r) = D(r)ψi(r) (1)

where E is the energy of detached electron, ψi is the ini-
tial wave function of H−, ε is a unit vector in the direction
of the laser polarization, D(r) = r · ε is the projection of
electron coordinate on the direction of laser polarization
direction. Following reference [12], we take the one elec-
tron approximation. The initial wave function in config-
uration space is then given by ψi(r) = Be−kbr/r, B is a
“normalization” constant and is equal to 0.31552, kb has
a numerical value 0.2355883, it is related to the binding
energy Eb of H− by kb =

√
2Eb. H is the Hamiltonian

governing the motion of the detached electron in the com-
bined atomic potential Vp(r) and the static electric field,
it can be written as H = p2/2 + Vp(r) + Fz. Because the
initial state is an S-state, the detached electron carries
one angular momentum right after being detached near
the nucleus, it is a good approximation to neglect Vp(r)
here.

The physical solution of equation (1) must be outgo-
ing at large r. If the detached electron wave function ψd(r)
satisfying the correct outgoing boundary condition is ob-
tained, the oscillator-strength density can be calculated
by using the following formula [14]

Df(E,F, θL) = −2(Ef − Ei)
π

Im 〈D(r)ψi|ψd〉. (2)

The photodetachment cross-section is given by σ(E,F ) =
(2π2/c)Df(E,F, θL), where c is the speed of light in au.
Our formula for the oscillator-strength density in equa-
tion (2) together with the solution of the inhomogeneous
equation (1) is equivalent to and derived [14] from the
conventional oscillator-strength density formula involving
the square of matrix elements in which the eigenfunctions
for the detached electron have to be obtained. We solve
equation (2) to get the detached electron wave function,
which is a superposition of eigenfunctions.

To construct the solution of equation (1) near the nu-
cleus using closed-orbit theory [13–15], the wave function
ψd(r) is separated into a direct part and a returning part,
ψd(r) = (ψd)dir(r)+(ψd)ret(r). The direct part represents
the detached electron wave initially going out from the nu-
cleus after photo-detachment and it satisfies the following
equation (

E − p2

2

)
(ψd)dir = D(r)ψi (3)

which is obtained from equation (1) after dropping the
static electric field term. The outgoing solution can be
written in a more general form than the previous one [16]

(ψd)dir(r) = − 4Bk2i

(k2
b + k2)2

h
(1)
1 (kr)f(θ, φ; θL, φL) (4)

where k =
√

2E is the momentum of the detached
electron, h(1)

1 (kr) is the outgoing spherical Bessel func-
tion [19,20], and

f(θ, φ; θL, φL) = cos(θ) cos(θL)
+ sin(θ) sin(θL) cos(φ− φL) (5)

represents the dependence of the detached electron wave
function on the outgoing direction (θ, φ). The overlap in-
tegral of the direct part with the source gives the same
smooth field-free background term [12,16],

Df0(E) = −2(Ef − Ei)
π

Im 〈D(r)ψi|(ψd)dir〉

=
8
√

2B2E3/2

3(Eb + E)3
. (6)

There are two methods to calculate this overlap integral.
In the first method, the variables in the integral are re-
written in a coordinate system with its z-axis pointing
to the laser direction, the integral then becomes identical
to the parallel case [16]. In the second method, we relate
this overlap integral to the integrated outgoing electron
flux [19] when there is no static electric field. It is clear
that this integrated outgoing flux is independent of the
laser polarization direction, the above overlap integral is
therefore equal to that obtained earlier [16].

For the oscillation term, we have to follow the de-
tached electron wave first going away from the nucleus
along the z-axis and later returning back to the nucleus.
The electron follows a closed-orbit. The wave function
(ψd)ret(r) represents the electron wave near the nucleus
when it is back. Physically (ψd)ret(r) is the continua-
tion of (ψd)dir(r) along the closed-orbit. To obtain the
returning wave function associated with the closed-orbit,
we draw a sphere of radius R, R is large enough so that the
asymptotic approximation h(1)

1 (kr) = ei(kr−π)/kr is valid,
it also must be small enough so that the electric field po-
tential term is much smaller than the initial kinetic energy
term of the detached electron inside the sphere, that is,
zF � k2/2. In our case, the direct outgoing wave on the
surface of this sphere is

(ψd)dir(r) = −i 4Bk2

(k2
b + k2)2

f(θ, φ; θL, φL)
ei(kr−π)

kr
. (7)

The returning wave near the nucleus can be approximated
by a plane wave traveling in the negative z-direction,

(ψd)ret(r) = ge−ikz , (8)

and
g = Aei(S−π

2 )(ψd)dir(θ = 0, R), (9)



M.L. Du: Photodetachment of H− in a static electric field 535

where S is a phase integral
∫

pdq along the closed orbit
from the surface out and back to the origin q = 0, π/2
is the phase correction at the turning point of the closed-
orbit, A is a measure of the amplitude of the returning
wave. In the present problem, (ψd)dir(θ = 0, R) is different
from the parallel polarization, but we can still use the
previous S and A [16,19],

A =

√
R2k

(R+ kt)2|k − ft cos(θi)| (10)

where t is the time going from the surface out and back to
the origin, θi is the outgoing direction of the closed-orbit
and is zero here. When the expression in equation (10) is
used in equation (9) and the limit of small R is taken, we
get

g =
2BFi

k(k2
b + k2)2

ei(S−π/2) cos(θL), (11)

where

S =
4
√

2E3/2

3F
(12)

is the action integral around the closed-orbit.
The overlap integral of the returning wave with the

source gives the oscillation term in the oscillator-strength
density,

Df1(E,F, θL) = −2(Ef − Ei)
π

Im 〈D(r)ψi|(ψd)ret〉

=
2FB2

(Eb + E)3
cos2(θL) cos(S). (13)

The overlap integral can be evaluated in the following way.
We first write D(r) = D1(r) + D2(r) where D1(r) = r
cos(θ) cos(θL) and D2(r) = r sin(θ) sin(θL) cos(φ − φL),
the overlap integral in equation (13) is split into two in-
tegrals corresponding to D1 and D2. The integral corre-
sponding to D1 differs from the integral in equation (11)
of reference [16] by cos2(θL), the integral corresponding
to D2 is zero because both ψi(r) and (ψd)ret(r) are in-
dependent of the variable φ but D2 changes sign when φ
is increased by π. When equations (6) and (13) are com-
bined, we have the final formula for the photodetachment
cross-section in an electric field with an angle θL between
the laser polarization direction and the static electric field
above threshold

σ(E,F, θL) =
16

√
2B2π2E3/2

3c(Eb + E)3

+
4B2π2F

c(Eb + E)3
cos2(θL) cos(S), E ≥ 0

(14)

where [21] c = 137.037 and the numerical value for B is
given right after equation (1). The first term on the right
side of equation (14) is the total detached outgoing elec-
tron flux neglecting the electric field, the second term is
the interference in the detachment cross-section induced
by the outgoing electron wave and the group of returning

electron wave, which first propagates away from the nega-
tive ion in the electric field direction and later returns back
to the negative ion following a closed-orbit, the sign of the
interference is determined by the phase accumulation S,
the factor {(4B2π2F )/[c(Eb + E)3]} cos2(θL) is the elec-
tron emission amplitude multiplied by the recombination
amplitude, in which cos2(θL) is the angular dependence.
We emphasize that this square dependence is really a spe-
cial case of this problem. In other problems such as atoms
in a magnetic field [13–15], the initial outgoing angle and
the final returning angle of an electron closed-orbit can be
different, then a more complicated angular dependence is
obtained.

We can now better understand the dependence of pho-
todetachment cross-section on laser polarization direction.
The formula for the parallel polarization case obtained
earlier [12,16] is just a special case of the present formula
in equation (14) with θL = 0. It corresponds to the largest
oscillation, the “ripple” effect is therefore more visible.
When the laser polarization is perpendicular to the static
electric field, θL = π/2, equation (14) predicates the oscil-
lation amplitude to be zero. The observed “ripple” effect
is not zero but very small [1,2], which is consistent with
our earlier quantum theory [12,17] for the perpendicular
polarization case. The present semiclassical theory for the
perpendicular polarization case can be refined by assum-
ing a more accurate outgoing wave function ψd(r) when it
is in a node [23], but it is beyond the scope of the present
article. For any other angle, the oscillation amplitude is
between the above two extreme values and it can be calcu-
lated readily using equation (14). For example, it is easy
to predict the oscillation amplitude should be reduced to
a half when the laser polarization angle is increased from
θL = 0 (parallel case) to θL = π/4. ForE ≥ 0, the cos2(θL)
factor in the oscillation amplitude is a direct reflection of
the intensity of the returning wave near the nucleus [17]
when the angle is varied. The present formula should be
accurate away from θL = π/2.

The formula in equation (14) can be written more com-
pactly as

σ(E,F, θL) = σ0(E)
[
1 + cos2(θL)

cos(S)
S

]
, E ≥ 0 (15)

where S is related to E and F in equation (12) and

σ0(E) =
16

√
2B2π2E3/2

3c(Eb + E)3
(16)

is the photodetachment cross-section in the absence of a
static electric field. This formula in equation (15) suggests
that E and S are better variables than E and F for an-
alyzing the oscillation in the cross-section. This scaling
in the detachment cross-section was already noticed by
Fabrikant [9,10,22]. Suppose we can measure or numeri-
cally compute σ(E,F, θL). Defining the Fourier transfor-
mation by σ̂(w) =

∫ Sr

Sl
[σ(E,F, θL)/σ0(E)] exp(−iwS)SdS

and assuming (Sr − Sl) � 2π, we expect the absolute
value of σ̂(w) as a function of w for any θL should display
a peak at w = 1, and the peak height should be equal
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Fig. 1. Theoretical photodetachment cross-sections given in
equations (14) and (17) for H− in a static electric field
F = 164 kV/cm with three different laser polarization angles
relative to the static electric field direction. Solid lines: θL = 0,
dashed lines: θL = π/4 and dotted lines: θL = π/2.

to (Sr − Sl) cos2(θL)/2 according to out present theory.
This provides a way to verify the effect of laser polariza-
tion direction on the photodetachment cross-section in the
presence of a static electric field.

For energy E ≤ 0, we have shown the cross-section
is an exponential function in the parallel polarization
case [12]. Due to its asymptotic nature, however, the for-
mula for E ≤ 0 and the formula for E ≥ 0 do not smoothly
match at E = 0. One may fix this problem by adjusting
the pre-exponential constant for E ≤ 0 so it smoothly
joins the formula for E ≥ 0 [24]. In our present problem,
the laser polarization is at an angle θL with the static
electric field, we argue an angle dependent factor cos2(θL)
similar to the second term of equation (14) should ap-
pear in the pre-exponential constant because for E ≤ 0
the major contribution comes from the detached electron
tunneling in the negative static electric field direction. The
suggested formula for E ≤ 0 is therefore

σ(E,F, θL) =
4B2π2F

c(Eb + E)3
cos2(θL)

× exp

(
−4

√
2(−E)3/2

3F

)
, E ≤ 0. (17)

In Figure 1 we show the cross-sections described by equa-
tions (14) and (17) for θL = 0, π/4 and π/2. It gives
an overall good description for the cross-section below
and above threshold. In the parallel polarization case and
above threshold, this formula slightly over estimates the
cross-section near E = 0 when it is compared with the
quantum result [12]. This deviation near E = 0 should
not be surprising because in our derivation we have made
the approximation that the outgoing wave is the same as
the one without the electric field. For this approximation
to be valid, it is required that zF � k2/2. If z is taken as

10a and F = 164 kV/cm is used as in Figure 1, the value
of the left hand side of the inequality is about 0.01 eV.
Therefore our formula in equation (14) is expected to be
accurate above threshold by a few 0.01 eV.

In summary, we have applied closed-orbit theory and
derived a more general formula in equations (14) and (17)
describing the photodetachment cross-section of H− in the
presence of a static electric field when there is an arbitrary
angle θL between the laser polarization and the static elec-
tric field. This formula gives a special simple dependence
of the cross-section on the polarization angle. We hope this
theoretical prediction will stimulate future experiments on
this question.

This work was supported by NSFC Grant No. 90403028. I
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